A global carbon assimilation system based on a dual optimization method
نویسندگان
چکیده
Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1 ◦ × 1 grid cells for the period from 2001 to 2007. Results show that land and ocean absorb −3.63±0.50 and −1.82±0.16 Pg C yr, respectively. North America, Europe and China contribute −0.98± 0.15, −0.42± 0.08 and −0.20± 0.29 Pg C yr, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60 %. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (−0.97± 0.27 Pg C yr) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to −0.78± 0.23 Pg C yr, the third largest carbon sink.
منابع مشابه
An Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملOptimization of Hybrid Composite Laminate Based on the Frequency using Imperialist Competitive Algorithm
Imperialist competitive algorithm (ICA) is a new socio-politically motivated global search strategy. The ICA is applied to hybrid composite laminates to obtain minimum weight and cost. The approach which is chosen for conducting the multi-objective optimization was the weighted sum method (WSM). The hybrid composite Laminates are made of glass/epoxy and carbon/epoxy to combine the lightness and...
متن کاملA Hybrid Meta-Heuristic Algorithm based on Imperialist Competition Algorithm
The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, ...
متن کاملA dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature
[1] To overcome the difficulties in determining the optimal parameters needed for a radiative transfer model (RTM), which acts as the observational operator in a land data assimilation system, we have designed a dual-pass assimilation (DP-En4DVar) framework to optimize the model state (volumetric soil moisture content) and model parameters simultaneously using the gridded Advanced Microwave Sca...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015